3.8.22 \(\int x^3 (c x^2)^{3/2} (a+b x) \, dx\)

Optimal. Leaf size=37 \[ \frac {1}{7} a c x^6 \sqrt {c x^2}+\frac {1}{8} b c x^7 \sqrt {c x^2} \]

________________________________________________________________________________________

Rubi [A]  time = 0.01, antiderivative size = 37, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, integrand size = 18, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.111, Rules used = {15, 43} \begin {gather*} \frac {1}{7} a c x^6 \sqrt {c x^2}+\frac {1}{8} b c x^7 \sqrt {c x^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x^3*(c*x^2)^(3/2)*(a + b*x),x]

[Out]

(a*c*x^6*Sqrt[c*x^2])/7 + (b*c*x^7*Sqrt[c*x^2])/8

Rule 15

Int[(u_.)*((a_.)*(x_)^(n_))^(m_), x_Symbol] :> Dist[(a^IntPart[m]*(a*x^n)^FracPart[m])/x^(n*FracPart[m]), Int[
u*x^(m*n), x], x] /; FreeQ[{a, m, n}, x] &&  !IntegerQ[m]

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rubi steps

\begin {align*} \int x^3 \left (c x^2\right )^{3/2} (a+b x) \, dx &=\frac {\left (c \sqrt {c x^2}\right ) \int x^6 (a+b x) \, dx}{x}\\ &=\frac {\left (c \sqrt {c x^2}\right ) \int \left (a x^6+b x^7\right ) \, dx}{x}\\ &=\frac {1}{7} a c x^6 \sqrt {c x^2}+\frac {1}{8} b c x^7 \sqrt {c x^2}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.01, size = 24, normalized size = 0.65 \begin {gather*} \frac {1}{56} x^4 \left (c x^2\right )^{3/2} (8 a+7 b x) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[x^3*(c*x^2)^(3/2)*(a + b*x),x]

[Out]

(x^4*(c*x^2)^(3/2)*(8*a + 7*b*x))/56

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 0.02, size = 24, normalized size = 0.65 \begin {gather*} \frac {1}{56} x^4 \left (c x^2\right )^{3/2} (8 a+7 b x) \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[x^3*(c*x^2)^(3/2)*(a + b*x),x]

[Out]

(x^4*(c*x^2)^(3/2)*(8*a + 7*b*x))/56

________________________________________________________________________________________

fricas [A]  time = 0.91, size = 24, normalized size = 0.65 \begin {gather*} \frac {1}{56} \, {\left (7 \, b c x^{7} + 8 \, a c x^{6}\right )} \sqrt {c x^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*(c*x^2)^(3/2)*(b*x+a),x, algorithm="fricas")

[Out]

1/56*(7*b*c*x^7 + 8*a*c*x^6)*sqrt(c*x^2)

________________________________________________________________________________________

giac [A]  time = 1.17, size = 22, normalized size = 0.59 \begin {gather*} \frac {1}{56} \, {\left (7 \, b x^{8} \mathrm {sgn}\relax (x) + 8 \, a x^{7} \mathrm {sgn}\relax (x)\right )} c^{\frac {3}{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*(c*x^2)^(3/2)*(b*x+a),x, algorithm="giac")

[Out]

1/56*(7*b*x^8*sgn(x) + 8*a*x^7*sgn(x))*c^(3/2)

________________________________________________________________________________________

maple [A]  time = 0.00, size = 21, normalized size = 0.57 \begin {gather*} \frac {\left (7 b x +8 a \right ) \left (c \,x^{2}\right )^{\frac {3}{2}} x^{4}}{56} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^3*(c*x^2)^(3/2)*(b*x+a),x)

[Out]

1/56*x^4*(7*b*x+8*a)*(c*x^2)^(3/2)

________________________________________________________________________________________

maxima [A]  time = 1.33, size = 33, normalized size = 0.89 \begin {gather*} \frac {\left (c x^{2}\right )^{\frac {5}{2}} b x^{3}}{8 \, c} + \frac {\left (c x^{2}\right )^{\frac {5}{2}} a x^{2}}{7 \, c} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*(c*x^2)^(3/2)*(b*x+a),x, algorithm="maxima")

[Out]

1/8*(c*x^2)^(5/2)*b*x^3/c + 1/7*(c*x^2)^(5/2)*a*x^2/c

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int x^3\,{\left (c\,x^2\right )}^{3/2}\,\left (a+b\,x\right ) \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^3*(c*x^2)^(3/2)*(a + b*x),x)

[Out]

int(x^3*(c*x^2)^(3/2)*(a + b*x), x)

________________________________________________________________________________________

sympy [A]  time = 1.16, size = 36, normalized size = 0.97 \begin {gather*} \frac {a c^{\frac {3}{2}} x^{4} \left (x^{2}\right )^{\frac {3}{2}}}{7} + \frac {b c^{\frac {3}{2}} x^{5} \left (x^{2}\right )^{\frac {3}{2}}}{8} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**3*(c*x**2)**(3/2)*(b*x+a),x)

[Out]

a*c**(3/2)*x**4*(x**2)**(3/2)/7 + b*c**(3/2)*x**5*(x**2)**(3/2)/8

________________________________________________________________________________________